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• Why does software need to be secure and reliable?

Mission Critical Systems Safety Critical Systems Security Critical Systems

• Software vulnerabilities are one of the main threats to the correct operation of these systems

• Buffer Overflows are classified as one the most dangerous vulnerabilities
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• Software vulnerabilities can be detected using the following methods

• Despite advancements in compilers and operating systems security, vulnerabilities in C 
binaries persist

• Leading to the need to apply these methods directly in released software (binaries)

Static Analysis Dynamic Analysis

High Scalability
Low Precision

High Precision
Low Scalability
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• The C programming language is the most vulnerable to 
these vulnerabilities due to the lack of safeguards when 
writing to arrays.

void copy(char *str) {
char buffer_2[16];
strcpy(buffer_2, str);

}

void main() {
char buffer_1[256];

for (int i = 0; i < 255; i++) {
buffer_1[i] = 'x';

}
copy(buffer_1);

}

Example.c
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copy:
push rbp
mov rbp, rsp
sub rsp, 32
mov QWORD PTR [rbp-24], rdi
mov rdx, QWORD PTR [rbp-24]
lea rax, [rbp-16]
mov rsi, rdx
mov rdi, rax
call strcpy
nop
leave
ret

Copy.asm

void copy(char *str) {
char buffer_2[16];
strcpy(buffer_2, str);

}

void main() {
char buffer_1[256];

for (int i = 0; i < 255; i++) {
buffer_1[i] = 'x';

}
copy(buffer_1);

}

Example.c
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RBP
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8 Bytes

16 Bytes

RSP-32

RDI

Before
strcpy call

After
strcpy call

Overflow!
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• This work aims to answer the question:

Can we devise a tool to accurately detect buffer overflows at scale?

• We propose the use of the Model Checking for buffer overflow discovery in binary C code

Model Checking
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• Model checking is a computational technique used to analyse the behaviours of dynamic systems

Model (𝐾)

Specification (𝜑)

Algorithm

System Description

𝑝

Temporal Logic Formula

Model Check

𝐾⊨𝜑 

𝐾⊭𝜑

The model satisfies the
specification

Generate Counter-Example
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• Binary Data Extractor

• Security Property Converter

• Model Checker

• Vulnerability Identifier
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Extracting Data from the Binary

Control Flow Graph
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Function copy [4198729]
    Syscall: False
    SP difference: 0
    Has return: True
    Returning: True
    Alignment: False
    Arguments: reg: [], stack: []
    Blocks: [0x401149, 0x40116c]
    Calling convention: None

User Function Data

Design Insights
Extracting Data from the Binary
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Stack Model

Byte States

Design Insights
Building the Stack Memory State Space
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Building the Stack Memory State Space

Memory State

Function 1 Function 2 Function 3

Byte States
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Building the Stack Memory State Space

Memory Transition Operators

Critical

Critical

Occupied

Free

PUSH RSI

Critical

Critical

Occupied

Free

Occupied

Critical

Critical

Occupied

Free

CALL 
strcpy

Critical

Critical

Occupied

FreeFree

Free

Direct Transition Indirect Transition

Occupied

Occupied
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Constructing the State Space

push rbp
mov rbp, rsp
sub rsp, 32
mov QWORD PTR [rbp-24], rdi
mov rdx, QWORD PTR [rbp-24]
lea rax, [rbp-16]
mov rsi, rdx
mov rdi, rax
call strcpy
nop
leave
ret

Copy.asm

1

1

2

2

3

3

4

4



Design Insights

16

Specifying Security Properties

Critical

Critical

Occupied

Free

Occupied

Stack

Translated to 
Omega Automata

Security Property
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Verifying Security Properties

No accepting run found
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Counter Example Trace
{call copy, push, sub 32, mov, call strcpy}

Sink

CWE-787

Identifying Vulnerabilities

Report:

Corresponds

Violated Property
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Program
Known 

Vulnerabilities
Output

Test case 1434 CWE-120, CWE-336 CWE-120

Test case 1430 CWE-120, CWE-336 CWE-120

Test case 1376 CWE-120, CWE-336 CWE-120

Test case 1330 CWE-120 CWE-120

Test case 103 CWE-120 CWE-120

Test case 149145 CWE-120 CWE-120

Test case 149137 CWE-120 CWE-120

Test case 149143 CWE-120 CWE-120

Test case 149139 CWE-120 CWE-120

Test case 149141 CWE-120 CWE-120

Implemented a seminal prototype of 
the Model Checker and tested for 10 
small C programs from NIST SARD

Security Property:

  
CWE-120
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• Introduced a model checking approach for the stack of binary programs

• Developed a framework for modelling the stack memory and formulating security properties

• Improve the accuracy of the memory state space

• Add new security properties to model more complex behaviors



Thank you!

Luís Ferreirinha and Ibéria Medeiros
Faculty of Sciences of the University of Lisbon
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