
On the Path to Buffer Overflow Detection
by Model Checking the Stack of Binary

Programs

Luís Ferreirinha and Ibéria Medeiros
Faculty of Sciences of the University of Lisbon

ENASE 2024
19th International Conference on Evaluation of Novel Approaches to Software Engineering

Contents

2

I. Introduction

II. Proposed Solution

III. Design Insights

IV. Preliminary Results

V. Conclusions

ENASE 2024

Introduction

3

• Why does software need to be secure and reliable?

Mission Critical Systems Safety Critical Systems Security Critical Systems

• Software vulnerabilities are one of the main threats to the correct operation of these systems

• Buffer Overflows are classified as one the most dangerous vulnerabilities

ENASE 2024

Introduction

4

• Software vulnerabilities can be detected using the following methods

• Despite advancements in compilers and operating systems security, vulnerabilities in C
binaries persist

• Leading to the need to apply these methods directly in released software (binaries)

Static Analysis Dynamic Analysis

High Scalability
Low Precision

High Precision
Low Scalability

ENASE 2024

Introduction

5

• The C programming language is the most vulnerable to
these vulnerabilities due to the lack of safeguards when
writing to arrays.

void copy(char *str) {
char buffer_2[16];
strcpy(buffer_2, str);

}

void main() {
char buffer_1[256];

for (int i = 0; i < 255; i++) {
buffer_1[i] = 'x';

}
copy(buffer_1);

}

Example.c

ENASE 2024

Introduction

6

copy:
push rbp
mov rbp, rsp
sub rsp, 32
mov QWORD PTR [rbp-24], rdi
mov rdx, QWORD PTR [rbp-24]
lea rax, [rbp-16]
mov rsi, rdx
mov rdi, rax
call strcpy
nop
leave
ret

Copy.asm

void copy(char *str) {
char buffer_2[16];
strcpy(buffer_2, str);

}

void main() {
char buffer_1[256];

for (int i = 0; i < 255; i++) {
buffer_1[i] = 'x';

}
copy(buffer_1);

}

Example.c

RBP

RIP

buffer_1
contents

RIP

RBP

buffer_2

RDI

8 Bytes

8 Bytes

16 Bytes

RSP-32

RDI

Before
strcpy call

After
strcpy call

Overflow!

ENASE 2024

Introduction

7

• This work aims to answer the question:

Can we devise a tool to accurately detect buffer overflows at scale?

• We propose the use of the Model Checking for buffer overflow discovery in binary C code

Model Checking

ENASE 2024

Introduction

8

• Model checking is a computational technique used to analyse the behaviours of dynamic systems

Model (𝐾)

Specification (𝜑)

Algorithm

System Description

𝑝

Temporal Logic Formula

Model Check

𝐾⊨𝜑

𝐾⊭𝜑

The model satisfies the
specification

Generate Counter-Example

ENASE 2024

Stack Model Checking Approach

9ENASE 2024

• Binary Data Extractor

• Security Property Converter

• Model Checker

• Vulnerability Identifier

Design Insights

10

Extracting Data from the Binary

Control Flow Graph

11

Function copy [4198729]
 Syscall: False
 SP difference: 0
 Has return: True
 Returning: True
 Alignment: False
 Arguments: reg: [], stack: []
 Blocks: [0x401149, 0x40116c]
 Calling convention: None

User Function Data

Design Insights
Extracting Data from the Binary

12

Stack Model

Byte States

Design Insights
Building the Stack Memory State Space

Design Insights

13

Building the Stack Memory State Space

Memory State

Function 1 Function 2 Function 3

Byte States

Design Insights

14

Building the Stack Memory State Space

Memory Transition Operators

Critical

Critical

Occupied

Free

PUSH RSI

Critical

Critical

Occupied

Free

Occupied

Critical

Critical

Occupied

Free

CALL
strcpy

Critical

Critical

Occupied

FreeFree

Free

Direct Transition Indirect Transition

Occupied

Occupied

Design Insights

15

Constructing the State Space

push rbp
mov rbp, rsp
sub rsp, 32
mov QWORD PTR [rbp-24], rdi
mov rdx, QWORD PTR [rbp-24]
lea rax, [rbp-16]
mov rsi, rdx
mov rdi, rax
call strcpy
nop
leave
ret

Copy.asm

1

1

2

2

3

3

4

4

Design Insights

16

Specifying Security Properties

Critical

Critical

Occupied

Free

Occupied

Stack

Translated to
Omega Automata

Security Property

Design Insights

17

Verifying Security Properties

No accepting run found

Design Insights

18ENASE 2024

Counter Example Trace
{call copy, push, sub 32, mov, call strcpy}

Sink

CWE-787

Identifying Vulnerabilities

Report:

Corresponds

Violated Property

Preliminary Results

19ENASE 2024

Program
Known

Vulnerabilities
Output

Test case 1434 CWE-120, CWE-336 CWE-120

Test case 1430 CWE-120, CWE-336 CWE-120

Test case 1376 CWE-120, CWE-336 CWE-120

Test case 1330 CWE-120 CWE-120

Test case 103 CWE-120 CWE-120

Test case 149145 CWE-120 CWE-120

Test case 149137 CWE-120 CWE-120

Test case 149143 CWE-120 CWE-120

Test case 149139 CWE-120 CWE-120

Test case 149141 CWE-120 CWE-120

Implemented a seminal prototype of
the Model Checker and tested for 10
small C programs from NIST SARD

Security Property:

CWE-120

Conclusions and Future Work

20

• Introduced a model checking approach for the stack of binary programs

• Developed a framework for modelling the stack memory and formulating security properties

• Improve the accuracy of the memory state space

• Add new security properties to model more complex behaviors

Thank you!

Luís Ferreirinha and Ibéria Medeiros
Faculty of Sciences of the University of Lisbon

	Diapositivo 1: On the Path to Buffer Overflow Detection by Model Checking the Stack of Binary Programs
	Diapositivo 2: Contents
	Diapositivo 3: Introduction
	Diapositivo 4: Introduction
	Diapositivo 5: Introduction
	Diapositivo 6: Introduction
	Diapositivo 7: Introduction
	Diapositivo 8: Introduction
	Diapositivo 9: Stack Model Checking Approach
	Diapositivo 10: Design Insights
	Diapositivo 11: Design Insights
	Diapositivo 12: Design Insights
	Diapositivo 13: Design Insights
	Diapositivo 14: Design Insights
	Diapositivo 15: Design Insights
	Diapositivo 16: Design Insights
	Diapositivo 17: Design Insights
	Diapositivo 18: Design Insights
	Diapositivo 19: Preliminary Results
	Diapositivo 20: Conclusions and Future Work
	Diapositivo 21: Thank you!

