
On the Path to Buffer Overflow Detection by Model Checking the Stack
of Binary Programs

Luı́s Ferreirinha a and Ibéria Medeiros b

LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Portugal
lpferreirinha@fc.ul.pt, imedeiros@di.fc.ul.pt

Keywords: Stack Buffer Overflow, Assembly, Model Checking, Linear Temporal Logic, Static Analysis, Software
Security

Abstract: The C programming language, prevalent in Cyber-Physical Systems, is crucial for system control where re-
liability is critical. However, it is notably susceptible to vulnerabilities, particularly buffer overflows that are
ranked among the most dangerous due to their potential for catastrophic consequences. Traditional techniques,
such as static analysis, often struggle with scalability and precision when detecting these vulnerabilities in the
binary code of compiled C programs. This paper introduces a novel approach designed to overcome these
limitations by leveraging model checking techniques to verify security properties within a program’s stack
memory. To verify these properties, we propose the construction of a state space of the stack memory from
a binary program’s control flow graph. Security properties, modelled for stack buffer overflow vulnerabilities
and defined in Linear Temporal Logic, are verified against this state space. When violations are detected,
counter-example traces are generated to undergo a reverse-flow analysis process to identify specific instances
of stack buffer overflow vulnerabilities. This research aims to provide a scalable and precise approach to vul-
nerability detection in C binaries.

1 INTRODUCTION

Software powers the systems of our world, from the
smallest gadgets to the largest machines in our in-
dustries. It is essential that this software does not
just work, but works without fail, preventing errors
that could lead to serious consequences. As our re-
liance on technology grows, so does the need for soft-
ware that is not just functional, but secure and de-
pendable. Most of this software is written in the C
programming language, particularly in cyber-physical
systems where reliability is crucial. C allows pro-
grammers to work close to the system’s hardware,
allowing for greater flexibility, but this comes with
significant risks. The language leaves room for vul-
nerabilities such as buffer overflows (BO), where the
lack of safeguards can lead to system compromises
and failures. These vulnerabilities occur when a write
operation is performed outside the bounds of a buffer,
and are especially dangerous. As shown by Aleph
One (One, 1996), through a BO, an attacker can hi-
jack the flow of execution of the program and execute

a https://orcid.org/0009-0002-1295-2079
b https://orcid.org/0000-0003-4478-8680

arbitrary code, allowing full access to the system.
Some efforts (Inácio and Medeiros, 2023; Kroes

et al., 2018) have been made to develop methods for
detecting such vulnerabilities, with most employing
static or dynamic analysis techniques, and in some
cases, a hybrid of both. Static analysis examines
a program’s code without executing it and achieves
higher code coverage but at the cost of a higher num-
ber of false positives (Nadeem et al., 2012). On the
other hand, dynamic analysis executes the program’s
code, offering more accurate vulnerability detection
but limited code coverage. Combining these tech-
niques can help overcome their limitations, leading
to greater scalability and precision.

Despite all the security mechanisms and safe-
guards of modern compilers and operating systems,
software vulnerabilities still exist in released C soft-
ware, i.e., binary programs. This reality highlights
the importance of applying the previously mentioned
techniques directly to binary programs. However, the
accurate identification of a vulnerability’s exploit vec-
tor in a binary is a challenging task. This is due to the
disassembled binary code offering little insight into
the program’s higher-level logic. This leads to the
need for a scalable and accurate analysis method to

detect vulnerabilities in binary programs. While dy-
namic analysis offers accuracy, it falls short in scal-
ability for large binaries. Conversely, static analysis
scales well but often lacks precision. The question
then arises: Can we devise a method that is both scal-
able and accurate?

This paper proposes a static analysis approach
capable of detecting BO vulnerabilities in compiled
C binaries via a formal technique known as Model
Checking. Model Checking is a method used to check
finite state systems by exhaustively searching the sys-
tem’s state space to determine if some property is
present. This method has been validated for verifying
properties in C programs (Chen and Wagner, 2002),
yet its applications to assembly code remain limited
due to the state space explosion problem.

To detect BO, we propose a model checking ap-
proach to verify security properties of a binary pro-
gram’s stack memory. The approach involves con-
structing a mathematical model representing each
user function’s stack frame in the binary, forming
the basis of the program’s stack memory state space.
Memory transition operators are defined to enable
transitions between states within this space. To iden-
tify BO behavior, we define security properties as
Linear Temporal Logic (LTL) formulas, which model
proper stack memory usage. These properties are
checked against the state space to identify any trace
that violates them. In a positive case, we determine
the vulnerability by utilizing the violated property and
a counter-example trace from the Model Checker.

This paper makes the following contributions: (1)
An approach using Model Checking to detect buffer
overflow vulnerabilities in binary C programs; (2)
Theoretical groundwork for modelling stack memory
in binary programs; (3) Design of a prototype for ver-
ifying stack memory security properties.

2 BUFFER OVERFLOW
VULNERABILITIES

A software vulnerability is a defect in a program that
compromises the security of the program and often of
the entire system it operates on (Eilam, 2005).

Currently, BOs are the most prevalent and dan-
gerous vulnerability class (Butt et al., 2022). These
vulnerabilities occur when software fails to check
a buffer’s bounds and writes to a memory address
beyond its domain. Overflows can occur in the
heap (for dynamic allocations) or stack (for local
variables, function parameters, and return addresses)
(One, 1996). BOs in the stack are the most harmful
since a program relies on function return addresses to

preserve control flow.
Listing 1 demonstrates a BO vulnerability. The

code allocates and fills a 256-byte buffer (buffer_1,
line 6) with x. In line 8, the copy function is called
with buffer_1 as the parameter. This function gener-
ates a 16-byte buffer (buffer_2) in line 2 and copies
the contents of the first buffer using the strcpy func-
tion. A BO occurs because buffer_2 is not large
enough to hold the contents of buffer_1, leading to
a spillage of excess data into adjacent memory areas.

1 void copy(char *str) {
2 char buffer_2 [16];
3 strcpy(buffer_2 , str);
4 }
5 void main() {
6 char buffer_1 [256];
7 for (int i = 0; i < 255; i++)

buffer_1[i] = ’x’;
8 copy(buffer_1);
9 }

Listing 1: Stack Overflow Example in C

1 push rbp
2 mov rbp, rsp
3 sub rsp, 32
4 mov QWORD PTR [rbp -24], rdi
5 mov rdx, QWORD PTR [rbp -24]
6 lea rax, [rbp -16]
7 mov rsi, rdx
8 mov rdi, rax
9 call strcpy

10 leave
11 ret

Listing 2: Copy function’s x64 Assembly Code

Compiling Listing 1 to x64 Assembly enables us
to investigate the memory interactions of the copy
function, as shown in Listing 2. Initially, the base
pointer (RBP) is saved on the stack with push rbp.
To allocate space for local variables, the stack pointer
(RSP) is then decremented by 32 bytes (sub rsp,
32). The location RBP-24 holds an 8-byte pointer
to buffer_1, and RBP-16 denotes the start of a 16-
byte space for buffer_2. When the strcpy func-
tion is called, it attempts to copy data from the ar-
ray pointed to by RDI (buffer_1) into the space
at RBP-16 (buffer_2). However, since buffer_1
contains 256 bytes, it surpasses the 16-byte limit of
buffer_2. This causes the excess data to overflow,
corrupting adjacent stack memory, including critical
data such as the saved RBP and the return address of
the caller function (i.e., RIP).

3 MODEL CHECKING

Model Checking is a computational technique used
to analyze the behaviors of dynamic systems, rep-
resented as state-transition systems (Clarke et al.,

2017). This technique is frequently utilized to val-
idate both hardware and software in the industry.
When it is not possible to thoroughly verify the ac-
tual software, a simplified model that encompasses its
core behavior can be constructed, preserving the fun-
damental characteristics of the system while avoid-
ing complexities that prevent full verification. Model
checking enables the verification of a system’s design
when directly verifying its implementation is exces-
sively expensive. According to Clarke et al. (Clarke
et al., 2017), the construction of a model checker is
based on three components:

• Model: A Finite state-transition graph that for-
mally describes the system, generally designated
as a Kripke Structure (K).

• Specification: The system’s desired properties
are expressed using temporal logic, which is used
to specify the criteria for correct state transitions.

• Algorithms: These computational methods check
whether the state-transition model complies with
the specifications in the temporal logic formulas.

The system we desire to model check is abstracted
into a state-transition graph K. The specifications
of the system’s behavior are formulated as tempo-
ral logic formula ϕ. The model checker then em-
ploys a decision procedure to determine whether K ⊨
ϕ holds; in other words, it checks if K satisfies ϕ.
Should the structure K not satisfy ϕ (expressed as
K ⊭ ϕ), the model checker will provide a counter-
example, demonstrating how the specification ϕ is vi-
olated within the structure K.

4 LINEAR TEMPORAL LOGIC

Temporal logic is used to reason about the way the
world changes over time. In the context of software,
it is used in the specification and descriptions of sys-
tems by describing the evolution of states of a pro-
gram which gives rise to descriptions of executions.

Propositional Linear Temporal Logic (LTL), as
the name implies, follows the linear-time view. In ad-
dition to the operators present in propositional logic,
it provides temporal operators that connect different
stages of computations and talk about dependencies
and relations between them (Clarke et al., 2017). Two
of the most commonly used operators in LTL formu-
lae include the following:

• ♢ϕ (eventually): operator used to specify that a
certain condition is expected to be true at some
point in the future. It asserts that a future state
exists in the execution where the condition holds.

• □ϕ (always): this operator asserts that a condition
must hold in all states of execution. It is used to
express invariance.
To facilitate the Model Checking process, an LTL

formula can be converted to a ω-automaton. These
are a variation of a Finite State Automaton (FSA) that
takes infinite strings as input, and, instead of having
a set of accepting states, they have a variety of accep-
tance conditions.

The process of translating LTL requirements into
ω-automaton enables the formalization of the Model
Checking problem as a search for accepted runs on an
automaton resulting from the synchronous product of
the State Space and the ω-automaton (Clarke et al.,
2017). Various algorithms exist for this translation,
one of them is detailed in (Gastin and Oddoux, 2001).

5 STACK MODEL CHECKING
APPROACH

In this paper, we propose a novel approach that aims
to improve the detection of stack BO vulnerabilities.
To detect these vulnerabilities, we use model check-
ing to verify security properties within a program’s
stack memory. These properties model the correct
usage of the stack memory space, and a violation of
these would account for a potential vulnerability. Be-
sides detecting BO vulnerabilities, the model checker
also allows the verification of user-defined security
properties via LTL formulas, allowing the verification
of specialized properties of the stack memory.

To verify the specified security properties, we cre-
ated a theoretical model of the stack memory and con-
structed a state space of the program’s stack. This
state space is initially constructed based on memory
write operations, identified through defined transi-
tion operators. Upon completion of this construction,
the model checker conducts a comprehensive search
within the state space to identify any traces that vio-
late the specified properties.

At the end of the model checking process, the vio-
lated properties and counter-example traces are emit-
ted. If at least one security property is violated, then
we determine the type of vulnerability based on the
violated properties and pinpoint its source based on
an analysis of the counter-example traces.

Figure 1 provides an overview of the proposed
model checker’s architecture, which is composed of
the following modules: Binary Data Extractor, Model
Checker, Security Property Converter, and Vulnera-
bility Identifier. Next, we present an overview of these
modules and their interconnections, and detailed de-
scriptions of each module are provided in Section 6.

Disassembler

Stack Memory State
Space Constructor

Model Checker

Exhaustive Space
State Searcher

Vulnerability
Detector

Vulnerability
Identifier

User Function
Extractor

Control Flow
Graph Generator

Linear Temporal
Logic (LTL)
Formulas

 Binary Data Extractor

Transition
Operators

Security Property
Converter

LTL to Omega
Automata
Translator

Violation of Security
Properties

All Security Properties
Hold

Omega
Automata

Assembly
Code

User
Functions

Control
Flow

Graph

Vulnerability
Database

Binary Code

Vulnerabilities
Found

Counter-
Example
Traces

Properties
Violated

Properties
Verified

Report

Figure 1: Overview of the model checking approach

Binary Data Extractor. This module begins by dis-
assembling the input binary program to extract x86-
64 assembly code. It performs two key analyses: (i)
identifies user-defined functions, extracting function
names and block addresses, and (ii) generates a con-
trol flow graph (CFG) of the program.

Model Checker. This component is in charge of
building the state space and verifying security prop-
erties within the program’s stack memory, and it op-
erates in two stages:

• Stack Memory State Space Constructor: builds a
state space model using a database of transition
operators that define which assembly instructions
affect the stack.

• Exhaustive Space State Searcher: verifies secu-
rity properties, represented as omega automaton,
against the program model through an exhaustive
state space search.

Depending on the verification outcomes, a report
is generated. If violations are detected, it includes
documents listing violated properties and counter-
example traces. If all properties are verified, the re-
port lists the verified properties.

Security Property Converter. The Security Prop-
erty Converter functions as an interface within our ar-
chitecture, facilitating the specification of additional
security properties by users. These properties are cru-
cial for verifying a given binary, especially for cus-
tomized security needs. This module stores user-
specified security properties formulated as LTL for-
mulas, alongside pre-defined properties that model
the correct usage of the stack memory. These formu-
las are then translated to ω-automaton, before they are
passed to the model checker for verification.

Vulnerability Identifier. When a security property
is found to be violated, the binary is automatically
forwarded to the Vulnerability Identifier. This mod-
ule will attempt to pinpoint the vulnerabilities’ exact
source within the binary code. This process involves
a two-phase approach. Initially, the type of vulnera-
bility is determined by correlating the violated secu-
rity properties with entries in a vulnerability database.
Subsequently, a reverse-flow analysis of the counter-
example traces is conducted to locate the precise po-
sition of the vulnerability in the program’s code.

6 DESIGN INSIGHTS

This section delves into the theoretical groundwork
laid for the presented approach for detecting vulnera-
bilities in binary programs and details the components
of our architecture.

6.1 Extracting Data from the Binary

To efficiently extract all relevant data from a binary,
we utilized Angr1, an open-source binary analysis
framework designed for Python, which employs the
Capstone disassembly engine2 for recursive disas-
sembly of the binary file. This method offers en-
hanced accuracy in translating binary files to machine
code, especially when compared to traditional linear
disassemblers like objdump3. The framework also
supports built-in analyses for extracting comprehen-
sive data from binaries.

1https://angr.io/
2http://www.capstone-engine.org/
3https://linux.die.net/man/1/objdump

Utilizing Angr enables the extraction of the CFG
of a binary program, along with critical User Function
Data. This data encompasses essential elements such
as function names and the addresses of basic blocks.

6.2 Building the Stack Memory State
Space

Before implementing the Model Checker module, it
was necessary to establish the foundational theoreti-
cal framework. This involved creating a model that
represents the program’s stack memory, which is es-
sential for appropriately replicating and evaluating the
program’s memory interactions. The state space was
designed to reflect different possible configurations of
the stack memory as the program runs. A collection
of memory operators was created to effectively con-
trol this state space. The operators specify the allow-
able actions on the state space, allowing the Model
Checker to assess the program’s behavior.

Memory State. In our approach, we define a state
of the program’s memory as a collection of function
stack frames. Specifically, at any given point in the
program’s execution, there exists a set of active stack
structures, each represented by a stack frame model
of a user-defined function. Figure 2 illustrates the
model for a memory state with two active function
stack frames.

Function Stack Frame Model. Conceptualized as
an array of bytes, this model mirrors the actual size of
a function’s stack frame, ensuring a one-to-one corre-
spondence with the real stack. The unique feature of
this model is that each byte in the array represents the
current state of a single byte in the stack.

Each byte in the function stack frame model is
characterized by one of four states – Free, Critical,
Occupied, and Modified –, as outlined in the automa-
ton in Figure 3.

State transitions are exclusively triggered by write
operations, which are classified as either risky or non-
risky. A risky write operation typically occurs when
sensitive data such as return addresses or security to-
kens are written to the stack, causing a transition to

Byte 1

Byte 2

Byte N

Byte 1

Byte 2

Byte M

Function 1
Stack Frame

Function 2
Stack Frame

Figure 2: Conceptualized Memory State

Freestart Occupied

Critical

Modified
Write

Risky Write

Write

Write
Write

Figure 3: Automaton for the Byte States

the Critical state. This indicates an increased vulner-
ability risk at that specific stack location. non-risky
writes, on the other hand, transition a byte to the Oc-
cupied or Modified state, depending on its prior state
and the nature of the write operation. The Free state
signifies unoccupied areas of the stack, less likely to
be the target of exploitation.

Transition Operators. Constructing the state space
required defining transitions between each memory
state. Although the transitions were first implemented
in the Byte State automaton (as depicted in Figure 3),
they are more intricate. We classify them into two
categories: direct and indirect.

Direct transitions are those that result from single
assembly instructions directly altering the stack. Ex-
amples include instructions like mov, which straight-
forwardly modify the stack. In contrast, indirect tran-
sitions arise from function calls that modify the stack
memory indirectly. An instance of this would be a call
to the strcpy function, where the effect on the stack
is a consequence of the function’s execution rather
than a direct instruction. A summarized representa-
tion of some direct and indirect memory operations is
provided in Table 1

6.3 Constructing the State Space

The state space is conceptualized as a graph structure,
where nodes encapsulate distinct memory states, and
edges depict transitions facilitated by a predefined set
of memory operations. To systematically construct
this state space, we outlined algorithm 1.

We may create the state space for the assembly
code of the copy function in Listing 2 by following
Algorithm 1. This state space is illustrated in Figure
4. For the final state in this state space, we consid-

Table 1: Direct and Indirect Memory Operations.

Type of Transition Operation
Direct MOV
Direct PUSH
Direct POP

Indirect CALL (e.g., strcpy)

Algorithm 1: Procedure to generate the state space
of a binary’s stack memory.

Data: CFG
Result: State Space (K)
Initialize empty K;
foreach basic block B ∈ CFG do

Determine the function f associated with
block B;

if function f not in K then
Create new memory state with f ;

end
foreach instruction I ∈ B do

Match I with memory operator;
if match is found then

Apply the operation to a copy of
the current memory state;

Update K with the new memory
state;

end
end

end

ered the worst-case scenario for the strcpy function,
when a buffer overflow occurs and overwrites every
byte up to the bottom of the stack. In the absence
of additional knowledge about the arguments for the
function call, we consider the worst-case scenario.

6.4 Specifying and Verifying Security
Properties

Our approach primarily aims to detect BO by defin-
ing security properties for our model, which repre-
sent the correct usage of the stack. Any violations
of these properties indicate potential BO in the pro-
gram. We utilize LTL to model these properties, sup-
plemented by unique functions specific to our model.
These functions enable referencing various model
parts within LTL. For instance, we have defined the
following two functions:
Definition 1. Stack(f): Given a function f , Stack(f)
denotes the stack frame allocated for f .
Definition 2. Byte(s, i): For a stack frame s,
Byte(s, i) returns the current byte state for the byte
at position i within s.

With these, we can define our first and most criti-
cal security property (Eq. 1):

□

(∧
x

Byte(Stack (x) ,0) =Critical

)
(1)

This security property expresses that the state of
the first byte of each stack frame in a memory state

Byte 1

Byte N

main call copycopy

Critical

push
Byte 1

Byte N

main copy

Critical

Critical

sub 32Byte 1

Byte N

main copy

Critical

Critical

Free

rbp-0

rbp-32

Free

mov

Byte 1

Byte N

main copy

Critical

Critical

...

...
Free

Occupied

rbp-32

Free

Free

rbp-24

rbp-0

Byte 1

Byte N

main copy

Modified

Modified

...

...
Free

rbp-32

Occupied

rbp-24

rbp-0

Free

Free
...

rbp-16

call strcpy

...

Occupied

Occupied

Figure 4: Simplified State Space generated from copy func-
tion’s assembly code in Listing 2

must always be Critical. If this property is violated, it
indicates that a buffer overflow has occurred and the
caller’s return address (i.e., RIP) was overwritten.

Before verifying this property, our model checker
must convert it into an ω-automaton, a task performed
by the Security Property Converter module. Using the
algorithm from (Gastin and Oddoux, 2001), this mod-
ule translates the properties into Büchi automaton, a
specific type of ω-automaton. The Büchi automaton
corresponding to Eq. 1 is present in Figure 5.

initstart
∧

x Byte(Stack (x) ,0) =Critical

Figure 5: Automaton for the Security Property in Eq.1

Finally, to verify this property against our state
space, we must find a sequence of states our automa-
ton accepts, i.e., a sequence where the given condition
holds continuously. Upon examining our state space,
as shown in Figure 4, it becomes evident that in the
final state, the condition of the first byte being criti-
cal is not met. This indicates that the caller’s return
address was overwritten, and a stack BO occurred.

6.5 Identifying Vulnerabilities

To identify vulnerabilities, our approach correlates vi-
olated properties with vulnerability classes. For in-

stance, a violation of the property detailed in Eq. 1
can indicate the presence of the vulnerability CWE-
787: Out-of-bounds Write. This categorization, while
general, can be refined by further defining more pre-
cise properties.

Consider the following LTL formula in Eq. 2,
which ensures that no strcpy call is followed by an
overwrite of a critical byte:

¬
(
♢
(∨

x
Byte(Stack (x) ,0) = Modi f ied

∧PreviousTransition = call strcpy
)) (2)

Compared to Eq. 1, this property is more specific,
and a violation could indicate the presence of the vul-
nerability CWE-120: Buffer Copy without Checking
Size of Input. However, it only accounts for strcpy
calls and would require further generalization to en-
compass other function calls.

To pinpoint the vulnerability’s location, we per-
form a reverse-flow analysis on the counter-example
trace. For the property in Eq.1, this trace includes
the transitions {call copy, push, sub 32, mov,
call strcpy}, complete with their respective ad-
dresses and other pertinent details. This analysis al-
lows us to identify the vulnerability’s origin. In this
case, it is determined by the address of the call
strcpy instruction.

6.6 Preliminary Results

A seminal prototype of the Model Checker was im-
plemented, enabling us to conduct initial tests for our
approach. For evaluation, we used 10 small C pro-
grams from NIST SARD4, each exhibiting improper
use of the strcpy function, resulting in stack BO. Our
method successfully detected violations of the secu-
rity properties outlined in Eq. 1 and Eq. 2 in all cases.
Consequently, it identified the presence of a CWE-
120 vulnerability in each of the 10 applications.

7 RELATED WORK

Vulnerability Discovery. Vulnerability detection, a
long-standing and extensively researched area, has
primarily focused on source code vulnerabilities. No-
table studies in this field include (Kaur and Nayyar,
2020), comparing static analysis tools for C/C++ and
Java, and (Sharma et al., 2024), which reviews the use
of machine learning in source code analysis.

4https://samate.nist.gov/SARD/

For C source code, (Inácio and Medeiros, 2023)
introduces a tool that integrates static and dynamic
analysis to detect and automatically repair buffer
overflow vulnerabilities. It employs static analysis to
identify potential overflows and extracts correspond-
ing code slices. These slices are compiled and sub-
jected to fuzzing, allowing the validation of vulnera-
bilities as either true or possible false positives.

Identifying vulnerabilities in binary code presents
greater challenges than source code due to informa-
tion loss in compilation. However, significant efforts
like (Vadayath et al., 2022) have been made. In this
work, the authors combine static and dynamic analy-
sis to detect vulnerabilities in binary files. Their tool,
Arbiter, is particularly effective at identifying key vul-
nerabilities, such as Incorrect Calculation of Buffer
Size and Uncontrolled Format String, among others.

The most common Dynamic Analysis technique
for discovering vulnerabilities is Fuzzing. This ap-
proach involves creating test cases, typically using
odd inputs, to intentionally crash a program and iden-
tify potential problems. The study conducted by
(Li et al., 2018) examines the latest developments
in fuzzing solutions. In a separate advancement, the
technique of grey-box concolic testing for test case
generation was introduced by (Choi et al., 2019).

Model Checking in Software Security. Model
Checking is traditionally used to model and study the
behavior of software and hardware, typically empha-
sizing the validation of certain functionalities or the
absence of unwanted behaviors.

The direct application of these techniques for vul-
nerability discovery is uncommon, however some re-
search has been done with this purpose. For web secu-
rity, (Huang et al., 2004) used bounded model check-
ing to verify the source code of web applications.

To Verify C code, some tools exist in the literature,
most notably (Chen and Wagner, 2002), which pre-
sented MOPS, a tool to examine security properties
in C software. A different tool for validating C source
code was introduced by Kroening et al. (Kroening and
Tautschnig, 2014), which uses bounded model check-
ing to verify memory safety features.

Although not commonly used in binary code due
to the state explosion problem, model checking has
been used to detect malware behaviors, and validate
micro-controller code (Mercer and Jones, 2005). No-
tably, Nguyen et al. (Nguyen and Touili, 2017) devel-
oped SPCARET, a temporal logic to detect malware.

For exploit discovery, (Eckert et al., 2018) devel-
oped a framework, HeapHopper, based on bounded
model checking and framework execution, to analyze
the exploitability of different heap implementations.

Unlike these works, we propose a novel approach
for vulnerability detection. Although we also resort
to model checking, we propose its use differently. We
construct the stack memory state space of binary pro-
grams and use model checking to verify security prop-
erty violations over it.

8 CONCLUSIONS

In this paper, we introduced a model checking ap-
proach for binary programs, aimed at detecting stack
BO vulnerabilities by verifying security properties of
the stack memory. Our proposal includes developing
a theoretical framework for modelling stack memory
and formulating security properties for its analysis.
Future improvements should focus on increasing the
precision of state space generation to better identify
various stack BO vulnerabilities and expanding our
security properties to cover complex malicious behav-
iors such as return-oriented programming (ROP).

As the next steps, we plan to advance our model
by adding new security properties and enhancing LTL
formulas with additional predicates, aiming to im-
prove stack BO detection and categorization. We will
then evaluate our approach with diverse binaries of
C applications, focusing on the precision in vulner-
ability detection and the scalability of our approach.
Based on the evaluation outcomes, we may adjust the
model and properties to enhance performance.

ACKNOWLEDGMENTS. This work was sup-
ported by FCT through the LASIGE Research Unit,
ref. UIDB/00408/2020 (https://doi.org/10.54499/
UIDB/00408/2020) and ref. UIDP/00408/2020
(https://doi.org/10.54499/UIDP/00408/2020)

REFERENCES

Butt, M. A., Ajmal, Z., Khan, Z. I., Idrees, M., and Javed, Y.
(2022). An in-depth survey of bypassing buffer over-
flow mitigation techniques. Applied Sciences, 12(13).

Chen, H. and Wagner, D. (2002). Mops: an infrastructure
for examining security properties of software. Pro-
ceedings of the ACM Conference on Computer and
Communications Security.

Choi, J., Jang, J., Han, C., and Cha, S. K. (2019). Grey-box
concolic testing on binary code. In IEEE/ACM Inter-
national Conference on Software Engineering (ICSE),
pages 736–747.

Clarke, E. M., Henzinger, T. A., Veith, H., and Bloem,
R., editors (2017). Handbook of Model Checking.
Springer Cham.

Eckert, M., Bianchi, A., Wang, R., Shoshitaishvili, Y.,
Kruegel, C., and Vigna, G. (2018). Heaphopper:
bringing bounded model checking to heap implemen-
tation security. In Proceedings of the USENIX Secu-
rity Symposium, page 99–116.

Eilam, E. (2005). Reversing: Secrets of Reverse Engineer-
ing. John Wiley & Sons, Inc., USA.

Gastin, P. and Oddoux, D. (2001). Fast ltl to büchi automata
translation. In Comp. Aided Verification, pages 53–65.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D., and
Kuo, S.-Y. (2004). Verifying web applications using
bounded model checking. In International Conference
on Dependable Systems and Networks, 2004, pages
199 – 208.

Inácio, J. and Medeiros, I. (2023). Corca: An automatic
program repair tool for checking and removing effec-
tively c flaws. In IEEE Conference on Software Test-
ing, Verification and Validation (ICST), pages 71–82.

Kaur, A. and Nayyar, R. (2020). A comparative study of
static code analysis tools for vulnerability detection
in c/c++ and java source code. Procedia Computer
Science, 171:2023–2029.

Kroening, D. and Tautschnig, M. (2014). Cbmc – c bounded
model checker. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 8413,
pages 389–391.

Kroes, T., Koning, K., Kouwe, E., Bos, H., and Giuffrida, C.
(2018). Delta pointers: buffer overflow checks with-
out the checks. In Proceedings of the Thirteenth Eu-
roSys Conference, pages 1–14.

Li, J., Zhao, B., and Zhang, C. (2018). Fuzzing: a survey.
Cybersecurity, 1.

Mercer, E. and Jones, M. (2005). Model checking ma-
chine code with the gnu debugger. In Proceedings of
the 12th International Conference on Model Checking
Software, page 251–265.

Nadeem, M., Williams, B. J., and Allen, E. B. (2012). High
false positive detection of security vulnerabilities: a
case study. In Proceedings of the 50th Annual South-
east Regional Conference, page 359–360.

Nguyen, H.-V. and Touili, T. (2017). Caret model check-
ing for malware detection. In Proceedings of the
24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software, page 152–161.

One, A. (1996). Smashing the stack for fun and profit.
Phrack, 7(49).

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats,
I., Moazen, H., and Sarro, F. (2024). A survey on
machine learning techniques applied to source code.
Journal of Systems and Software, 209:111934.

Vadayath, J., Eckert, M., Zeng, K., Weideman, N., Menon,
G., Fratantonio, Y., Balzarotti, D., Doupé, A., Bao, T.,
Wang, R., Hauser, C., and Shoshitaishvili, Y. (2022).
Arbiter: Bridging the static and dynamic divide in vul-
nerability discovery on binary programs. In Proc. of
the USENIX Security Symposium, pages 413–430.

https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDP/00408/2020)

